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Abstract. The critical exponents of the non-interacting hard-square lattice gas model are 
determined by means of seriesanalysis and finite-size scaling. The series analysis leads to 
results for the exponents that are consistent with the expected king universal values. A 
scaling analysis is performed on different types of numerical finite-size data obtained by 
means of the transfer-matrix method. The results support king universality. A procedure 
based on conformal invariance reproduces the known Ising temperature and magnetic 
exponents within IO-'. Furthermore we estimate the critical density of the hard-square 
model as &=0.367743000(5). 

1. Introduction 

The commonly accepted notion of~universality implies that critical points at the end of 
a~ two-phase coexistence line are Ising-like. Indeed, exact results and most results 
obtained from accurate numerical techniques support this point of view. A notable 
exception here is the series analysis by Baxter et a1 111 of the non-interacting hard- 
square model. The sue of the squares is such that they cannot sit on nearest-neighbour 
positions, but the squares do not interact otherwise. The absence or presence of a 
lattice-gas particle at site i is expressed by a variable o,=O or q=l,  respectively. 
Denoting the activity of the gas particles as z, the partition sum is 

The product is over all pairs of nearest-neighbour sites, and guarantees that configu- 
rations with interpenetrating particles do not contribute to 2. 

The maximum particle density occurs when the squares occupy one of the two 
checkerboard-like sublattices. When the density of the squares is sufficiently lowered, 
a phase transition occurs to a disordered state in which the two sublattices are equally 
occupied. In the absence of an exact solution, Baxter et a1 [l] applied series expansion 
techniques. to determine the critical exponents of this model. They found that the 
specific heat exponent at this critical point was a' = 0.09 f 0.05, somewhat different 
from the exactly known value of the two-dimensional king model a' =O. However, 
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subsequent analyses of the finite-sizekaling behaviour of the temperature derivative 
of the correlation length by Goldfinch and Wood 121 and by Racz [3] did not show 
significant deviations from king universality. Using scaling assumptions, one can 
express their results in terms of a’; then it appears that a‘ does not differ from zero by 
more than 2 x IO-’ [2] or 4x 

Thus, the evidence against the validity of king universality for the hard-square 
model is not convincing. Still, we found the result by Baxter et a1 sufficiently 
interesting to start some new work on this model. We expected that we might thus be 
able to find more compelling numescal evidence that the hard-square model is inside 
the Ising universality class, or perhaps to demonstrate deviations from Ising univer- 
sality more clearly. 

A possibility to obtain very accurate results is by means of transfer-matrix 
techniques and finite-size scaling [4], as demonstrated, for example, in a recent 
analysis by Blote and Wu [5] of the square-lattice antiferromagnetic king model in a 
magnetic field. The non-interacting hard-square model is a special case of this model: 
it is obtained in the limit of an infinitely strong field. The availability of an accurate 
result for the critical point of the hard-square model may already be a sufficient reason 
to re-analyse the series of Baxter ef al [l]. That will be the subject of section 2.  Our 
results do not show convincing deviations from the expected Ising universal behav- 
iour. Furthermore, we have made several finite-size scaling approaches to the 
problem, using different sets of scaling assumptions and system shapes. In section 3.1. 
we analyse transfer-matrix results for square systems with periodic boundaries. In 
section 3.2, we use instead cylindrically shaped systems that are infinitely long in one 
direction. The most accurate exponents thus obtained agree with king universality 
within a margin of IOm6. 

[3]. 

2. Analysis of the high-density series 

The value of the critical activity where the translational symmetry of the model (1) is 
spontaneously broken is denoted z.. A recent determination yielded [5] 

z,=3.796255 174 (3) (2) 
(the uncertainty in the last decimal place is given in parentheses) corresponding to a 
chemical potentialp(,= 1.344 015 100 4 (8). This result was obtained with the transfer 
matrix method and using the assumption of king universality. Then the ‘finite-size 
divergence’ of the correlation length at the critical point is given by 

E(L) -AL 
where A is a universal amplitude (Blote and Nightingale [6] and references therein). It 
has the value 4ln for the magnetic corrrelation function, and 1/(2n) for the energy- 
energy correlation function. Thus, the critical point and critical exponents can be 
estimated from finite-size data for the correlation length. 

Here we emphasize that this assumption does not bias the determination of the 
critical point. The appkation of a wrong value of the amplitude in the finite-size 
analysis will influence the finite-size estimates of the critical point, but not their limit, 
as long as the temperature-like variable (chemical potential or activity) is relevant. 
Thus, the extrapolation procedure will still lead to the correct result. 
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Figure 1. The behaviour ofg(r.) as a function of n -3. The data for even n are shown by 0 
and those for odd n by +. Iterated fits indicate thatg=O.17.49(1), in agreement with the 
expected king value -$ (shown by .). 

On the basis of the result (2) for the critical activity z,, the series expansions of 
Baxter et a[ [I] can be re-analysed. Thus we consider expansion of the order 
parameter (i.e. the staggered density) R in terms of the inverse activityx=llr: 

R - * ( x ) = C  R,,n”. (3) 
“=a 

The ratios r, = R./R,,-, asymptotically obey 

1 
r, =z, [ 1 +; (8p - I)] (4) 

We have thus estimated the critical exponent p by solving (4) for f i ,  using (2) and 
the coefficients R, listed in table I1 of [I]. The solutions are denoted /3(rn). On the 
basis of the mechanism of corrections-to-scaling, we expect that the /3(rn) will 
converge to p with a power of n. Power-law fits indicate that the leading correction 
behaves approximately as K 3 ,  but additional corrections are prominent. Different 
amplitudes apply to even and odd n. This behaviour of P(rJ is shown in figure 1 
versus n-3.  Iterated fits [6,7] indicate that p=0.1249 (l), in agreement with Ising 
universality. 
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Figurel The residues of the D-log Pad6 approximants of the series R ( x )  versus the 
deviations of the corresponding poles from the critical value x, , 

Next, we consider the D log Pad& analysis of the series R ( x )  presented in table I of 
[l]. We show the results for in figure 2 as a function of the distance of the 
corresponding poles from the critical value x,= l/z,= 0.263 417 488. The dependence 
of the residues of (dldx) In R ( x )  on this distance is remarkably smooth. These data 
indicate that @ does not differ from 1/8 by more than a few times lo-'. 

Baxter et a1 [l] concluded that the staggered density series in p is not long enough 
to give reliable estimates of the exponents since p displays only a weak singularity. As 
a result of the D log Pade analysis of R( p') - (p: -py('-''I, where p' = 1 - Zp, and 
assuming @ = 118, they found a' = 0.09 k 0.05, somewhat different from the king value 
a=O. Alternatively, one can analyse a derivative of the series in which the singularity 
appears more strongly [SI. We chose %he series 

which can be found from 
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Table 1. The coefficients of the series p'(x)  and D log Pad6 approximants of the series 
p"'. 

n P" [N.D] Pole Residue 

1 1 [6,7] 0.265262 1.1104 
2 -1 
3 4 [7, 61 0.264756 1.0958 
4 -9 
5 36 [7, 71 0.264651 1.0926 
6 -106 
7 407 [7, SI 0.264 159 1.0741 
8 -1281 
9 4819 [8,7] 0.264822 1.0972 

10 -15 806 
11 59280 [E, 81 0.264056 1.069'4 
12 -200 046 
13 749958 [E, 91 0.264 289 1.0786 
14 -2580901 
15 9 677 159 19, 81 0.263 819 1.055 8 

17 126 680074 [9,9] 0.263 368 1.019 3 
18 -446 859 565 

20 -5 962 612 074 
21 22 378 164 365 [lo, 91 0.263 708 1.0 484 
22 -80 124 302 732 
23 300839 190930 [lo, 101 0.263711 1.0486 

16 -33 777 265 

19 1676 434 924 19, io] 0.263 925 1.063 2 

of which the coefficients are determined by those givenin appendiv B in [l]. In table 1 
we list the coefficients p. of the series p'(x) as well as the poles and the residues of 
(dldx)ln p @ ) .  These estimates of a' are plotted by diamonds in figure 3 as a function of 
xc-xpo~c. For comparison, the corresponding estimates of Baxter etal.  [ l ]  are given by 
squares versus pL-pL0,., where p:=O.264514 (see the finite-size scaling analysis in 
section 3). Both sets of data cover a smooth curve as a function of the deviation of the 
pole from the critical value. It appears that the results taken from table 1 fall much 
closer to 0. 

In view of correction terms present, we are unaware of an U priori reason why the 
analysis of p@'(x) should produce better results than that of R(p' ) .  The data collapses 
in figure 3 are better than those in plots versus l / ( N +  D) where [A', D] indicates the 
degrees of the approximants. On the basis of such a plot for (d/dx) Inp") series we 
estimate a'= -0.1 (1). Thus the analysis of p"' indicates that a' may be smaller than 
the result obtained from the R(p')  series [l]. 

3. Finite-size scaling analysis 

We consider the model ( 1 )  on L x L and L x m square lattices with periodic boundary 
conditions. To enable the introduction of two sublattices in a checkerboard-like 
fashion, L is restricted to be even. We use the transfer matrix technique in order to 
calculate numerically the partition sum ( l ) ,  as well as some of its derivatives. 
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Figure3. The dependence of the a' estimates found from the D-log Pad6 approximants 
on the deviations of the poles from the critical point. The present data are shown versus 
xi-xpor by 0, and those of Baxrer er al. versus pc-ppOla by 0. 

Denoting the lattice gas variables (uj,, u,~ ,  . . . , ujL) in the jth row of the lattice by o;, 
the elements of the row-to-row transfer matrix T are 

L 

~ ( u ; ,  o;) =x~2)'~=l(~~,fi+oi*), ( ~ - u i . k ~ j , ~ ) ( l - u , , X - , ~ i , ~ ) ( ~  (7) 
k=l 

with U , , ~ = U ; , ~  in accordance with the periodic boundary conditions. The partition sum 
(1) of a system consisting of M rows is equal to 

Z=TrTM. (8) 
For the numerical purpose of calculating 2, it is sufficient to have an algorithm 
available that computes the vector T.v from a given vector U with elements ~ ( u ) .  
Since the transfer matrix can be decomposed in a product of sparse matrices, it is not 
necessary to store the whole matrix T in the computer memory [4]. In this way it is no 
problem to perform calculations up to about L=20. For further details of the 
numerical methods, see [5-7,9]. 
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Table 2. Finite-size data for square systems for 2pL, cL and x r .  , 

2 
4 
6 
8 

10 
12 
14 
16 

0.8090898056421140 
0.774 971 280 168 817 7 
0.7616725216302425 
0.755 063 942 755 142 6 
0.751 1214217544006 
0.748 502 156 061 453 1 
0.746 635 359 180 546 2 
0.745 237 325 668 847 3 

0.140 234 999 156 698 9 
0.192 24? 445 951 476 7 
0.2246002865877822 
0.247705 748 541 591 2 
0.2656570381718074 
0.2803252992432338 
0.292721 9631820310 
0.303 454 575 700 854 5 

0.724 743 813 172 343 
2.447 647 203 710 980 
4.978 297 322 277 479 
8.241664994051 973 

12.186091 89883877 
16.77381425559746 
21.975 681 723 236 16 
27.768 176 645 488 04 

3.1. Square systems 
The perturbation scheme described in [lo, 91 is used to compute the first and second 
derivatives Z(') and Z(') of the partition sum (8) with respect to the chemical potential 
p of the lattice gas particles. This method yields more accurate results than numerical 
differentiation. In the present application of the scheme, the infinite nearest- 
neighbour repulsion K ,  plays the role of K, and Ky in 191, and Ap=p-pc that of the 
field h. 

The first derivative determines the lattice gas density p, = Z(')/L2Z, and the second 
one the specific heat c, = Z(*)/L22- (Z("/LZ)'. The finite-size quantities'p, and c, for 
L X L systems are given in table 2 for L up to 16. 

To improve the convergence of the finite-size estimates of the critical density p; ,  
and anticipating the outcome of the present analysis, we make use of the assumption 
that the model (1) belongs to the d = 2. king universality class. Thus we expect that. the 
density pL scales as the energy [ l l ,  12,9]: 

pL =pe+ a&-' In L + a,L-'+ a&*+. . . . (9) 

pJpm,,=0.735 49 (2) (10) 

Iterated power-law fits [6,7] in accordance with (9) yield the result 

with pmar=4. Note that, even if the exponents of L in (9) were incorrect (i.e. the 
model would not obey king universality), the fitting procedure would still converge to 
the correct result with increasing system sizes. 

For the determination of the temperature exponent from the density data, we use 
the asymptotic finite-size scaling formula 

pL=pe+ LYl:d(al +a&') (11) 
where d=2 is'the dimensionality, and the term with exponent - p  represents a 
correction to scaling. Adopting the value of pc found above, the fitting procedure 
yields 

The finite-size scaling dependence of the specific heat is 
y,= 1.000 (2 ) .  (12) 

C,=L'Y~-d(b,+bzL-q) (13) 

yr= 1.000 (6). (14) 

so that fits applied to the cL data allow another estimate of the temperature exponent. 
We obtain 
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Another exponent of interest is the magnetic exponent y h .  It may be determined 
from the finite-size dependence of the staggered susceptibility. Thus we introduce a 
staggered field h acting with different signs on the two sublattices, i.e. a term (-)"ih 
in the reduced Hamiltonian per spin with coordinates ( i , j ) .  ,The inclusion of such a 
term in the transfer matrix is quite straightforward. The second derivative of 2 to h 
yields the staggered susceptibility xL. Numerical data at the critical point are obtained 
from a perturbation expansion of 2 in h, quite analogously to the calculation of cL. 
We skip the technical details, except the remark that one has to distinguish between 
the even and odd rows of the lattice during the calculation, because the staggered field 
changes sign. The finite-size data for xL are included in table 2.  They are expected to 
scale as 

xL=Lzyh-d(c l  + c*L-'). (15) 

y,>=1.87500(5).  (16) 

The fits and power-law extrapolations then yield the result 

3.2. Infinitely long systems 
In the limit M+ m , the partition sum (8) satisfies 

M--  lim ZuM=,lo (17) 
where do is the largest eigenvalue of 1. Denoting the corresponding eigenvector by uo , 
and differentiating the free energy per sitef= logZULM to ,U leads to 

Both u0 and T depend on ,U in first order. However, since T is symmetric, the 
first-order contribution to Z due to o0 vanishes. Therefore, 

1 u o . T  .U0 l u , - S . u o  -_ - 
PL=?Svo.T.uo L oo-uo 

where 1' = dT/* and S is diagonal with elements 
L 

S ( q , ' J j ) ) = 6 , , 0 , ~ ~ i , k  (20) 
k= 1 

so that 1' = :(S. T+T . S). The eigenvector, which can numerically be determined by 
the conjugate-gradient method [13], thus determines the density p L .  Finite-size data 
up to L=20 are presented in table 3. These data indicate that the second and third 
term on the right-hand side of (9) are absent for these elongated systems. The largest 
occurring power of L appears to be about -4. Iterated fits accounting for such a 
correction term yield 

p,/pm,=0.735 48600 (1). (21) 
The next-largest eigenvalues of T are associated with the exponential decay of 
correlation functions. The inverse correlation lengths are equal to the 'gaps' g,(L) in 
the eigenvalue spectrum: 

10 gi(L)=E;yL)=log- lh' 
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Table3. Finite-size data for infinitely long systems 

2 0.726244058 108471 -0.273755941 891 529 0.117312343 954852 m 

4 0.734551521 141 716 -0.257141 015883448 ~ 0.122897437477 144 1.492501 752647'339 
6 0.735264781 185 881 -0.753123M4668091 0.124046855005525 1.121420005335352 
8 0.735408617687668 -0.251763787044615 0.124464412999446 1.060768 848639344 
10 0.735452218732831 -0.251 169009236913 0.124659218713833 1.037092738295593 
12 0.735468961 546 115 -0.250862019414078 0.124764844822631 1.025 140640628718 
14 0.735476484295798 -0.750684793622 105 0.124828232680120 1.018210205 128 867 
16 0.735480267636423 -0.250573910761 62a 0.124869 154362282 1.013816616 102912 
18 0.735482339629 123 -0.250500208376032 0.124897065375393 1.010850 140618826 
20 0.735483551262701 -0.250448876309532 0.124916935356005 1.008750497 149675 

The magnetic correlation length corresponds with the eigenvalue d1 that is second 
largest in absolute value. In accordance with the alternating behaviour of the magnetic 
correlations, this eigenvalue is negative. It can, together with the corresponding 
eigenvector v l ,  simply be obtained by application of the conjugate-gradient method 
[13] to the negative side of the eigenvalue spectrum. Differentiation of the magnetic 
gap to j i  leads, in analogy with QS), to 

Numerical data for g:(L) are included in table 3. Finite-size scaling predicts that 

Fitting an expression of this form to the data, and subsequent'iterated fits lead to the 
result 

g ; ( L ) ~ e  Lye- ' ( U  + UL- 7. (24) 

y,=1.00001(2). (25) 
Another way to determine critical exponents uses conformal invariance. A relation 
derived by Cardy [14] applies to the finite-size amplitude of the correlation lengths: 

where x,=d-y, is the anomalous dimension of the observable associated.with the 
correlation length  ti^: Thus the sealed gaps Lgi(L)/(2n) provide estimates of xi .  
Numerical data for the scaled magnetic gap are presented in table 3. Power-law 
extrapolation yields 

yh=1.875000 (1). (27) 
A similar determination was done for the temperature exponent. The energy-energy 
correlation function is associated with the-eigenvalue Az that is third largest in absolute 
value. It is positive (and hence the second largest). The associated eigenvector uz has 
the same symmetry properties as the leading eigenvector (invariant under translations 
in the finite direction of the lattice). It may be obtained by means of the conjugate- 
gradient algorithm using orthogonalization with respect to the leading eigenvector. 
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Finite-size results for the resulting scaled gaps Lg,(L)/(h) are shown in table 3. 
Subsequent power-law extrapolation yields 

G Kamkniarz and H W J Blcite 

y,=1.000000(1). (28) 

4. Discussion 

In order to shed more light on the problem concerning the universal classificafion of 
the non-interacting hard-square model, we have determined its critical exponents 
using a variety of methods with different scaling assumptions. The series analysis of 
the density as a function of the inverse activity was analysed using Pad6 approximants, 
and yielded a specific-heat exponent considerably closer to the king value 0 than the 
result found by Baxter et a1 [I] from the staggered density series as a function of the 
density. 

We see no a priori reason for which of the series results for a should be the more 
accurate one. We interpret the difference as a confirmation that the series containing 
p are too short for a reliable determination of the critical exponents. It seems 
reasonable to conclude that the numerical results of the series analyses are, although 
not very accurate, consistent with king universality. 

The assumptions involved in the finite-size analysis amount to the analyticity of 
renormalization transformations employing an additional finite-size field [U] 1/L with 
exponent y r =  1. Thus, the analysis will yield results in terms of the renormalization 
exponents y, and yt. Other exponents follow from these by means of scaling. Here the 
main interest is in the value of yt in view its relevance for the specific heat exponent 

We have determined finite-size data for several quantities: the density of the lattice 
gas particles, the specific heat, the staggered susceptibility, and the temperature 
derivative of the magnetic correlation length. The scaling behaviour of all these data is 
in an accurate agreement with the king universal exponents. 

Another approach intimately related with renormalization was made using the 
hypothesis of conformal invariance. The temperature and magnetic exponents were 
determined using the relation between exponents and the finitesize amplitude of the 
associated correlation lengths. The results are in precise agreement (within one 
millionth) with the exactly known king values yh= 15/8 and y,= 1. 

In addition to these results for the exponents, we mention that a recent determi- 
nation [9] of the universal amplitude ratio Q = ( R z ) * / ( R 4 )  defined on the distribution 
of the order parameter R of the critical hard-square model yielded Q = 0.856 25 (9, in 
agreement with the accurately known king value [9]. 

Summarizing, the whole body of available numerical results provides strong 
evidence that the non-interacting hard-square model belongs to the Ising universality 
class, in agreement with the topology of the phase diagram. 

a= (d-yt)/Y,. 
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